Numerical Investigation of the Production Behavior of Methane Hydrates under Depressurization Conditions Combined with Well-Wall Heating
نویسندگان
چکیده
In this study, a 2D hydrate dissociation simulator has been improved and verified to be valid in numerical simulations of the gas production behavior using depressurization combined with a well-wall heating method. A series of numerical simulations were performed and the results showed that well-wall heating had an influence enhancing the depressurization-induced gas production, but the influence was limited, and it was even gradually weakened with the increase of well-wall heating temperature. Meanwhile, the results of the sensitivity analysis demonstrated the gas production depended on the initial hydrate saturation, initial pressure and the thermal boundary conditions. The supply of heat for hydrate dissociation mainly originates from the thermal boundaries, which control the hydrate dissociation and gas production by depressurization combined with well-wall heating. However, the effect of initial temperature on the gas production could be nearly negligible under depressurization conditions combined with well-wall heating.
منابع مشابه
Numerical Simulation of Methane Production from Hydrates Induced by Different Depressurizing Approaches
Several studies have demonstrated that methane production from hydrate-bearing porous media by means of depressurization-induced dissociation can be a promising technique. In this study, a 2D axisymmetric model for simulating the gas production from hydrates by depressurization is developed to investigate the gas production behavior with different depressurizing approaches. The simulation resul...
متن کاملNew Approaches for the Production of Hydrocarbons from Hydrate Bearing Sediments
The presence of natural gas hydrates at all active and passive continental margins has been proven. Their global occurrence as well as the fact that huge amounts of methane and other lighter hydrocarbons are stored in natural gas hydrates has led to the idea of using hydrate bearing sediments as an energy resource. However, natural gas hydrates remain stable as long as they are in mechanical, t...
متن کاملFormation and Dissociation of Methane Hydrates from Seawater in Consolidated Sand: Mimicking Methane Hydrate Dynamics beneath the Seafloor
Methane hydrate formation and dissociation kinetics were investigated in seawater-saturated consolidated Ottawa sand-pack under sub-seafloor conditions to study the influence of effective pressure on formation and dissociation kinetics. To simulate a sub-seafloor environment, the pore-pressure was varied relative to confining pressure in successive experiments. Hydrate formation was achieved by...
متن کاملSensitivity Analysis of Parameters Governing the Recovery of Methane from Natural Gas Hydrate Reservoirs
Naturally occurring gas hydrates are regarded as an important future source of energy and considerable efforts are currently being invested to develop methods for an economically viable recovery of this resource. The recovery of natural gas from gas hydrate deposits has been studied by a number of researchers. Depressurization of the reservoir is seen as a favorable method because of its relati...
متن کاملOTC 19458 Numerical Simulation of Methane Hydrate Production from Geologic Formations via Carbon Dioxide Injection
Scientific and technological innovations are needed to realize effective production of natural gas hydrates. Whereas global estimates of natural gas hydrate reservoirs are vast, accumulations vary greatly in nature and form. Suboceanic deposits vary from disperse concentrations residing at low saturations in the pore space of unconsolidated sediments with sand-sized particles to higher concentr...
متن کامل